From Spitzer to Herschel and Beyond The formation of galaxies

Scott C. Chapman (Caltech)

The First Galaxies? (when do most of the stars form?)

- The most Massive galaxies (>M* ellipticals) form at z~2.3
- Hierarchical Galaxy Formation and Evolution, z~20,5,1,0?
 - non-linear and complicated (hydro, SF, feedback ...)
 - Mass may assemble rapidly at certain epochs
 - Luminosity may not couple to Mass

When (and How?) do all the stars get made in galaxies as a function of mass?

"Form" galaxies quickly during mergers; obscured by dust ...

Formation Mechanisms I

- Wide range of proposed mechanisms for forming massive galaxies:
 - (pseudo-)monolithic collapse ($T_{merge} < T_{SF}$)
 - major merger of two existing galaxies
 - an extended series of minor mergers process $(T_{merge} > T_{SF})$
- Can we observationally distinguish between these scenarios?

The Extragalactic Background

- FIRB = opt/UV EBL -> half of the energy production (from SF or AGN) over history of the Universe arises in highly obscured regions
- Much of the star formation in the Universe might be obscured

Merging (forming) galaxies: e.g. The Antennae

 Distinct opt/UV and far-IR luminosity

Dust obscures UV;
 absorbs and re-radiates at longer wavelengths

(~100-200 microns)

At high-z: Submm Morphologies? (dust+gas)

Giant Extended (10kpc) starbursts ... RADIO tracing UV (... a very different mode of star formation?)

- •MERLIN ~0.2 arcsec radio beam
- •65% appear to trace optical structure
- 35% suggest a single compact component
- •~0.4 arcsec RMS accuracy in radio/optical alignment
- Internal obscuration maps ...

The birth of massive (>M*) galaxies in the Universe (SMGs)

(Chapman, Blain, Smail, Ivison 03,04)

SMGs satisfy Checklist: Proto-Elliptical Population

- Contain a significant fraction of SF in the Universe (= large fraction of the EBL)
- Metal rich (dusty, Nii/H α) (Swinbank+ 04)
- Found predominantly at z>2 (Chapman+ 03,04)
- Have a space density ~10⁻⁵Mpc³ (few M*)
- Individually exhibit very high star formation rates (Chapman+ 04; Blain+ 04b)
- Have merger-like morphologies
- Host massive black holes (Alexander+ 04)
- Massive galaxies (Frayer+98,99 Neri+ 03)
- Strongly clustered (Blain+ 04b)
 - -> Local examples ULIRGs?

N(z) of SMGs: using the radio to ID

- To make progress ...
 - Exploit radio-FIR relation seen for local galaxies (<2x scatter)
 - Pinpoint large samples of SMGs in the radio (0.3" accuracy)

Photometric Redshifts for dusty, luminous gals?

Proliferation of Submm/radio redshift indicator

But dz ~ 1

Somewhat better in UV/opt if detectable

Can Spitzer/Herschel help? ...

Spectroscopic Redshifts for 100 SMGs

- Easier than expected: strong emission lines (50%) (especially Lyα)
- ~75% spectroscopic completeness (chapman+03)

Median redshift for SCUBA galaxies

- Currently ~100 SMG z-IDs
- Median redshift z=2.3+/-0.4 full range z=1-4
- Use evolutionary models to understand selection effects
- Volume density ~10⁻⁵ Mpc⁻³
 comparable to few M* Elliptic
 (Chapman et al. 2003)

High-z Galaxy Formation Themes

- 1) Broad range of dust temperatures/SEDs at high-z
- 2) What could we have learned from the UV (are the SMGs/OFRGs orthogonal to BX/LBG?)
- 3) Once an AGN, always an AGN
 AGN identified in the UV, is an AGN in the optical,
 and (locally) mid-IR
 X-ray, radio?
- 4) SFRD evolution (the Madau plot)
 Different Luminosity classes have different evolutions

SCUBA galaxies – contribution to FIRB is small Dust temperatures (Td=36K)

Fit Dale+Helou (02)
SEDs to 850, radio, z
Confirm at 350um
with SHARC2

Spitzer predictions
 PAHs, high-ion lines?
 Range >100@24um
 Hot dust?

Dust Temperatures (or SED shape)

... But, SMGs only **half** the story

OFRGS (optically faint radio galaxies)

All the FIR luminosity of SMGs; Undetected with SCUBA Mostly Star Formers; Similar volume densities; hotter Td's

SMGs: what do we learn from UV?

submm/radio versus U,B,R

-detect 'most' SMGs at B,R,I,J,K - bands

(many at U if z<2.7)

-but ... FIR luminosities severely under-predicted

Hidden AGN?

Nebular Line Emission: Composite $H\alpha$ spectrum,

25 H α detections; stack the 18 "starbursts"

*X-ray & extended-radio => SCUBA galaxies not dominated by AGN

AGN in the UV, AGN in Halpha

Spitzer - continuum phot; midIR spectroscopy

•SMGs detected at all Spitzer wavelengths - crude SB/AGN classification

(Frayer+ 2004, Ivison+ 04, Egami+ 04)

- ...the promise of midIR spectroscopy (~1hr integrations with IRS?)
- ·HOWEVER:

UV/optical classifications the same as mid-IR locally (PAHs vs power-law) (Tran et al. 2001; Lutz et al. 1999)

The Star Formation History of the Universe

*X-ray & extended-radio => SCUBA galaxies not dominated by AGN

UV galaxies evolve differently from Luminous FarIR galaxies

- SMG/OFRG: main site of massive star formation at z>2
- •<M* galaxies assemble more gradually over long time.
- ullet Balance between obscured and unobscured SF has shifted drastically in last 80% T_{Hub}

(Chapman et al. 2004)

Where are we, where do we go?

- 1) Currently only scratching the surface of luminous/massive galaxies (Spitzer and Herschel will help considerably)
 -still unsure if we have census of all z~2 luminous galaxies
- 2) To really understand galaxy formation and evolution
 («M* galaxies), we need larger, colder facilities.
 -finding the hyper-luminous peaks in different bands not enough.
- -e.g., understand an individual galaxy's effects on IGM.

Submm Cosmology: power of the K-correction

Submm Continuum from Space:

<350µm (still large beamsize on HERSCHEL) confusion limits to low-z galaxies

>350µm; higher-z galaxies: but confusion happens immediately

Bivariate LF (Chapman, Helou+03) to model Td distribution.

EVLA

The EVLA - WIDAR Correlator Project

Andromeda

EVLA: "far-IR" selection

- 10x more sensitive than VLA ...
- new correlator, longer baselines, more antennas

Molecular/Fine Structure emission lines • Molecular gas defines sites of star formation •IRAM-PdBI Needs precise redshifts (500Mhz band) •17 SMGs observed, 12 detected in CO (Neri et al. 2003, Greve et al. 2004) 100 10 0.1 6x15m IRAM PdB Interferometer 0.01 ~ 100 L* 10 100 1000 10000 wavelength (µm)

PdBI CO (3-2/4-3) Survey (stretching the limits of the facility!)

Longest baselines: High Spatial Resolution CO

Z=3.4 SMG, **H6/H7** (Neri et al. 2003)

- Deep submm maps
- <1" resolution
- CO-redshifts for all sources
- Detect MW-type galaxies out to high redshifts!

•Resolved structures

(HST scales ... subarcsec) in continuum, and in
molecular & fine structure
lines.

SAFIR: overcome 40µm confusion with aperture size!

But in submm: pre-SAFIR ... SPICA/BLISS: cold (4.5K) 3.5m

telescope (PI: M.Bradford)

Fine Structure Lines:

- -overcoming confusion (bright, detectable lines)
- -probing temperature, density, ionization state of material around luminosity source.
- -couple to entire bulk of galaxy (not just "skin" as optical lines)

Fine Structure Lines: COLD, 3.5m aperture

Fine Structure Lines: temperature range in FIR SEDs

Bivariate LF (Td,L)

(Chapman, Helou, Lewis, Dale 03)

Cii tied to PAH strength (Helou+ 01)

Temperature distribution implies a range of redshift detectability

CONCLUDE: High-z Galaxy Formation Themes

- 1)Broad range of dust temperatures/SEDs at high-z
 - -> detectability; luminosities; probe full FarIR SED to characterize
- 2) What could we have learned from the UV?
 - -> need submm/farIR to identify luminous, enshrouded galaxies
- 3) Once an AGN, always an AGN
 - -> Do AGN exist which are truly completely hidden?
- 4) Different Luminosity classes have different evolutions
 - -> we want FarIR selection and fine structure line diagnostics, out to z>5 to understand how the complete mass spectrum of galaxies assembles

Conclusions

- SCUBA galaxies have many of the expected properties of proto-E's
 - Median z=2.4+/-0.4 for >5mJy SMGs, produce 20% EBL
 - Space density of ULIRGs ~1000x higher at z~2-3 than today
 - Space density comparable to massive E's at z=0
 - Striking merger-like morphologies
 - CO follow-up shows these are gas rich and massive galaxies
 - Presence of weak AGN in many SCUBA galaxies SMBH
 - Evidence that SMGs are strongly cluster in 3-D
- ...properties consistent with merger of gas-rich disks w/ small bulges...
- Balance between obscured/unobscured SF has reversed in last 10 Gyrs
- Future facilities
 - SIRTF ULIRGs at z=1-2, more detailed SEDs and spectroscopy dust properties
 - SCUBA2 much bigger samples of z>2 ULIRGs (sky survey for ALMA)
 - ALMA gas dynamics, morphologies, etc for MW @ z<5

The End